
Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 13

Hybrid Music Recommender using LightGCN

S.K. Tuladhar and M. Dailey

Abstract— The music industry's rapid growth and the audience’s increased access to music have made music recommender
systems increasingly relevant. Various approaches, including content-based and collaborative filtering, have been explored for
this. Graph Convolution networks (GCNs) perform well in recommendation using bipartite graphs, but struggle with cold-start
problems. This paper explores the use of audio features from songs as content in GCNs, resulting in a hybrid method which
improved recall at K values for music recommendation. The LightGCN, a state-of-the-art model with one layer of trainable
embeddings, was used as the primary recommender. The musicnn library was used to extract audio features from songs which
were used as the initialization values for the LightGCN embeddings for songs. The Spotify Million Playlist Dataset was used
to train the model for link prediction. The model predicted which playlist a given song should belong to. This method showed
a 5% increase in recall at K for both trained and fixed embedding settings for songs, indicating that audio embedding
initializations improve the performance of the LightGCN. The recall at K for random initialization with trained embeddings
was 0.51 and with fixed embeddings was 0.48. Both values increased to 0.57 upon using initializations extracted from audio.
The hybrid method showed reasonable results for playlist continuation, the random initialization gave diverse results and
extracted initialization gave consistent results based on similarity scores. However, it gave inconclusive results for item cold-
start problems because no clear metric was identified for its evaluation.

Index Terms – musicnn, item cold-start, audio embeddings, Spotify Million Playlist

I. INTRODUCTION

ECOMMENDER systems are crucial for consumers to
filter vast amounts of music content on the internet. With

the rise of independent artists and the ease of access to all
artists worldwide, a fast and effective way to recommend
songs is needed. Recommender systems typically use
collaborative filtering (CF) based on usage patterns and
ratings.

Music recommendation has always been an extensive
problem, and up until 2013, with the approach by den Oord,
Dieleman and Schrauwen (2013) [1], Content-based (CB)
recommenders were considered inferior to CF. Deep
learning-based Graph Neural Networks (GNNs) like NeuMF,
Neural Graph Collaborative Filtering (NGCF), and
LightGCN perform well, but they struggle with the cold-start
problem, which is of two types - item cold start and user cold
start, depending on which information is missing [2]. There
have been many hybrid models such as that of [3] which have
combined CF with content data about items. However, until
now, GNNs have mainly only used the CF approach.

This work was done as Sunny K. Tuladhar’s Master’s Thesis at
Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand,
under the supervision of Matthew Dailey. The work was supported
in part by Leapfrog Technologies, Charkhal, Kathmandu.

Sunny K. Tuladhar was with Asian Institute of Technologies,
Pathum Thani 12120, Thailand. He is now with Leapfrog
Technologies, Charkhal Rd, Kathmandu 44605.
(Email: sunnyktuladhar@gmail.com).

Matthew Dailey was also with Asian Institute of Technologies,
Pathum Thani 12120, Thailand. He is now with Dexcom, USA.
(Email: dailey.matthew@gmail.com).

In this paper, we took the LightGCN model [4] and used
musicnn [5] to incorporate audio content features into node
embeddings of songs, enabling a better hybrid
recommendation model. The proposed architecture is shown
in Fig. 1. Using the features extracted from musicnn we
improved the model’s performance and tackled the item-
cold-start problem by giving the model data about the song
content.

In order to achieve this, we followed the following steps:
i. Created a version of LightGCN incorporating audio

features as embedding initializations.
ii. Used the data from the Spotify Million Playlist Dataset

(MPD) along with the audio from Spotify’s preview
URL to download 30-second audio files for the
experiments.

iii. Extracted the audio embeddings from the preview
audio files using musicnn to initialize GNN
embeddings of the songs and train the model.

iv. Evaluated the performance of the model in playlist
continuation and item cold-start scenarios based on
subjective analysis of the results.

v. Evaluated the experiment using recall@k metric with
the LightGCN and compared the difference that
embedding initializations make on the performance.

II. LITERATURE REVIEW

In this section, the two elements of the method, the
recommender system and the audio feature embeddings
which is used to initialize the node embeddings in our graph,
are discussed. Among deep learning methods, GNNs have
been shown to perform well for the task of recommendations.
Audio embeddings generated by various methods also have
been shown to capture the features to aptly represent the

R

mailto:sunnyktuladhar@gmail.com
mailto:dailey.matthew@gmail.com

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 14

content of the sound. Hence, combining these two elements
was the prime motive of this paper.

Fig. 1. Proposed method to introduce Audio Embeddings into LightGCN.

A. Recommender Systems
Recommender systems deduce users’ preferences from

user-item interactions or fixed attributes, and then suggest
other products that users might be interested in. Formally, the
main task of the recommender is to estimate or predict the
user’s preference for any item 𝑖  ∈  𝐼 represented by

𝑦(",$)  =  𝑓%ℎ∗" ,  ℎ∗$(, (1)

where ℎ∗" is item 𝑖’s learned representation, ℎ∗#	is user 𝑢’s

learned representation, score function 𝑓(·) can implement
any of a variety of operations including dot product, cosine
and multi-layer perceptrons and 𝑦(#,") is the preference or
similarity score for user 𝑢 on item 𝑖, which ideally represents
the probability the two entities will interact. In this case, the
item is the song, and the user is the playlist.

Recommender systems gained widespread use after the
introduction of the matrix factorization (MF) collaborative
filtering (CF) algorithm during the Netflix Prize competition.
The inclusion of various kinds of supplementary information
made this technique preferable to traditional nearest-neighbor
algorithms for product recommendations [6]. Later, [1] used
CF combined with latent audio features extracted from a
CNN. [7] used neural networks to model the latent features in
MF. [8] came up with NGCF, which make use of the user-
item graph structure by generating embeddings on it.[4]
removed unnecessary features from NGCF and improved its
performance while making it less complex and created the
LightGCN. This is the model we use for the experiments.

There are three types of recommender systems, depending
on the type of information they use to make the
recommendation. The categories are content-based (CB),
collaborative filtering (CF), and hybrid.
CB recommendations are primarily based on comparisons
between objects and auxiliary data provided by users [9]. CB
filtering recommends items that have high similarity to past
items the user has interacted with. This system is very
efficient in cold start scenarios [10] but they are unable to
provide personalized recommendations and are also limited
in variety because there is insufficient data available about
the user’s profile.

CF is the most used approach in recommender systems.
This method works on the principle that people with similar
tastes will be interested in similar content. These systems
base their recommendations on the preferences of like-
minded users instead of the features of each item.

In hybrid recommender systems, multiple approaches are
combined, and the benefits of each approach are used to
offset the drawbacks of the others [10]. The method
described in this paper can be considered a hybrid method as
we incorporate content into the GCN in the form of audio
embeddings.

B. Graph Neural Network-based Recommender Systems
One of the approaches that have led to rapid progress in

recommender systems is the GNNs, which use a graph
representation of the recommender data. User-item
interactions can be aptly represented in the form of a bipartite
graph between user and item nodes as shown in Fig. 2.

LightGCN is a Graph Convolutional Network built upon
the NGCF, the previous state-of-the-art GCN-based
recommender model [8]. Feature transformation and non-
linear activation were removed from the NGCF model,
resulting in LightGCN, which obtained better results. The
basic GCN learns representations for nodes by smoothing
features over the graph through iterative graph convolution.
GCN aggregates features of neighbors to obtain a new
representation of each target node:

𝒆#
('()) = AGG1𝒆#

('), {𝒆"
('): i ∈ 𝒩𝓊}8, (2)

where, 𝒆#

(') and 𝒆"
(')are the refined embeddings of user u

and item i, respectively, after k layers of propagation. 𝒩𝓊
denotes the set of items that user u has interacted with. AGG
is an aggregation function that considers the k-th layer’s
representation of the target node [4].

Fig. 2. GNN framework for user-item collaborative filtering. Reprinted from
[11]

LightGCN uses a simpler weighted sum aggregator as
shown in Fig. 3, and it abandons feature transformation and
non-linear activations which have been shown to be
burdensome for CF. In LightGCN, the graph convolution
operation is defined as,

𝑒#
('()) = ; <

1
1>(|𝑁"|)>(|𝑁#|)8

A
"∈,!

∗ 𝑒"
('),

𝑒"
('()) = ; <

1
1>(|𝑁"|)>(|𝑁#|)8

A
#∈𝒩"

∗ 𝑒#
('), (3)

where 𝑁# denotes the set of items user 𝑢 has interacted
with and 𝑁" is the set of users that have interacted with item
𝑖 [4]. The term)

./(|,"|)/(|,!|)1
 is the symmetric normalization

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 15

term that follows the standard GCN design of [12], which
helps prevent the scale of embeddings from increasing with
graph convolution operations.

All the layers are then combined as shown in Equation (4).

𝛼' is set to 1 1 + 𝐾G 	 as it gives good performance of the
model [4].

𝒆#  =  ;𝛼'𝒆#
(')

2

'34

; 	 𝒆"   =  ;𝛼'𝒆"
(')

2

'34

(4)

The final model prediction is the inner product of user and
item final representations. It is used to rank items or users for
recommendation generation. The equation is,

 𝑦J#" = 𝒆#5𝒆" (5)

LGCN uses the Bayesian personalized ranking loss [13]

𝐿678 = −; ; ; ln𝜎
9∉𝒩𝓊

1𝑦J#" − 𝑦J#98
"∈𝒩𝓊

;

#3)

+ λ||𝐸(4)||<							

																			(6)

where λ controls the L2 regularization strength.

Fig. 3. LightGCN architecture. Reprinted from [4].

C. Audio Embeddings
For this paper, the audio embeddings were extracted from

the songs using the Python library musicnn [5] which
contains models pre-trained on the Million Song Dataset
(MSD) [14] and the MagnaTagATune (MTT) [15] dataset.
The model can be used for out-of-the-box music audio
tagging. This was used to extract embeddings from audio
which was our goal.

The basic building blocks of the musicnn model can be
seen in Fig. 4. The model uses a log-mel spectrogram, which
is fed into a music-motivated CNN front-end to capture the
timbral and temporal features of the audio. These features are
fed to the dense layer middle portion of the model, which
extracts higher-level representations from the previous
layers. The final temporal pooling back-end predicts tags
from the extracted features. The penultimate layer is derived
from this back-end. These are the features used in this
experiment to initialize the LightGCN embeddings.

Fig. 4. Overall building blocks of musicnn model. Reprinted from [5]

III. METHODOLOGY AND EXPERIMENTAL
DESIGN

For our experiment, content information was injected in
the form of audio feature embeddings extracted from musicnn
into our LightGCN model initialization for songs as shown in
Fig. 1. In this section, the entire process, from data
acquisition, pre-processing, audio embedding extraction,
recommendation prediction, and evaluation are discussed.

A. Dataset
The dataset used is the Spotify MPD [16], which contains

1,000,000 playlists. A playlist includes playlist title and the
titles of the songs. The dataset has over two million unique
songs and over 66 million edges. The edges are links between
songs and playlists. The playlists were created by users on the
Spotify platform between January 2010 and October 2017.
We used this information later to simulate the cold-start
problem taking songs released after 2018 that are not present
in the dataset.

Since the original dataset is extensive, we used a smaller
subset of different sizes as created by [17] for our
experiments. The data subset was created by calculating its
K-core which is "The largest connected sub-graph of a graph
with every node having a degree of at least K" [17]. Here we
used K-core 10 and removed songs with no audio previews
to get the required dataset. Our Spotify MPD K-core 10
dataset has 71,233 playlists and 27,687 songs after removing
songs with no audio previews. It has 1,812,878 undirected
edges between songs and playlists.

B. Preprocessing
In this section, we discuss the process for converting of the

raw JSON files, which is the default format of the MPD,
specifying playlists and songs as nodes into to a PyTorch
Geometric Graph, along with the audio embedding extraction
process.

Graph creation

The graph representation of the dataset was created by
converting the JSON file of the Spotify MPD into a PyTorch
Geometric file with the help of Stanford-SNAP library [18].
The graph is bipartite, so there are no connections between
similar nodes i.e., no connection between songs or between
playlists themselves.

Audio embeddings

The audio embeddings were extracted from the songs with
Spotify’s available 30-second previews using the Spotipy
library for Python [19]. The songs that did not have audio
previews were discarded.

The embeddings of the audio were extracted using
musicnn. It had two pre-trained weights MTT-musicnn and
MSD-musicnn, which were obtained by training the MTT

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 16

and MSD, respectively. Musicnn generates song-level tags
from audio. The tags include the instrument, style, vocal
types, and many more based on the content of the audio file.
For this case, we extracted the 200-unit embeddings from the
penultimate layer of musicnn. These 200 elements are
reduced to 64 using Principal Component Analysis (PCA), as
our LightGCN model is designed for 64-element embedding
initialization.

Combining Audio Embeddings and LightGCN

Our main objective is to feed content information into
LightGCN. We do this by initializing song node embeddings
in the GCN using the audio embeddings of the songs
extracted by musicnn. The task we performed was link
prediction. We predicted links between two nodes (a song and
a playlist) based on their similarity scores. We used the dot
products between embeddings of the two nodes (song and
playlist) from the final layer of the model to represent how
likely the song is to end up in that playlist. Our equation for
the similarity is the dot product between song and playlist
embeddings as shown below,

𝑠𝑖𝑚(𝑝, 𝑠) = 𝑥=2 ⋅ 𝑥>2 (7)

where 𝑝 is a playlist, 𝑠 is a song, 𝑥=2 is the embedding for

the playlist, and 𝑥>2 is the embedding for the song, both of 𝐾
dimensions.

GCNs create node embeddings for each playlist and each
song. We initialized song embeddings as the audio
embeddings generated from musicnn. We initialized playlist
embeddings using a random normal distribution. Then, we
used two methods to train the model. First, fixed embeddings,
where we froze the song embeddings by giving them a
gradient of 0 during training. Then we trained the model, and
it learned only the playlist embeddings. The song embeddings
remained unchanged throughout the training. Second is
trained embeddings, where we trained both song and playlist
embeddings. Here, the model learned new embeddings for
both songs and playlists while it trained. Loss function used
in both cases was the BPR loss.

C. Evaluation method
The model was evaluated using two methods. First was

calculating the recall@k. The second was the subjective
analysis of the results for two tasks, playlist continuation and
song cold-start problem.

Recall

To assess the model performance, we used recall@k.
Recall@k is the ratio of the number of songs in the top K
recommendations that are relevant to the total number of
songs that are relevant according to the ground truth.

Recall@k =
𝑆𝑜𝑛𝑔𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑜𝑛𝑔𝑠 , (8)

For a specific playlist 𝑝 it can be expressed as

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 for playlist p =
n𝑃= ∩ 𝑅=n
n𝑃=n

, (9)

where, 𝑃= is the set of positive items (songs) the playlist

includes and 𝑅=	 is the set of songs recommended by the
model. For the top K recommendations |𝑅=| = 𝐾. Songs that
are already in the playlist (training set) were excluded. The
final recall@k value was calculated by averaging recall
across all playlists.

Subjective Evaluation

Since we are dealing with music, it is difficult to rely only
on the recall values, as there are subjective nuances to music
and its recommendation. To address this, we performed two
types of subjective evaluation. The first recommended songs
for a particular playlist (playlist continuation) and the second
predicted the playlists for a particular song (item cold-start).

For playlist continuation, we evaluated the
recommendation of songs given for a custom playlist-of-
interest. We obtained the embeddings of this playlist. Then
we obtained the top K songs, not present in the playlist, that
have the highest similarity score with the playlist by
calculating the dot product of the embedding of the playlist
with all the song embeddings in the dataset, as shown in
Equation 10. Recommended songs were then subjectively
analyzed based on genre given the songs that it was trained
on. Specifically,

𝑠𝑖𝑚(𝑝𝑜𝑖, 𝑠) = 𝑥=?"@A ⋅ 𝑥>@A ;  𝑝𝑜𝑖 ∈ 𝑃 ,  𝑠 ∈ 𝑆, (10)

where 𝑝𝑜𝑖 is the playlist of interest also present in the

playlist dataset	𝑃 , 𝑠 is a song in the dataset 𝑆, 𝑥=?"@A is the 64-
dimension embedding for the playlist and 𝑥>@A is the 64-
dimension embedding for the song.

 For the item cold-start, we evaluated the playlists
recommended for a “cold” song. Given a song with no
previous links, the model predicts the best playlist it should
belong to. We evaluated the cold-start performance through
this. Since the train-test validation split used is random, and
each of the splits includes all the nodes. The method was
introducing new songs from after 2018, which were not
present in our dataset and subjectively analyze those songs’
playlist prediction. Embeddings of the songs were generated
using the musicnn library. The similarity scores were checked
against each playlist’s embeddings as shown below. The
model predicted the top playlists the song could belong to,
based on the top similarity scores, and the results were
subjectively analyzed. Specifically,

𝑠𝑖𝑚(𝑝, 𝑠𝑜𝑖) = 𝑥=@A ⋅ 𝑥>?"@A  ;  𝑝 ∈ 𝑃 ,  𝑠𝑜𝑖 ∉ 𝑆, (11)

where 𝑠𝑜𝑖 is the cold song of interest, which is not in the

song dataset 𝑆, 𝑝 are the playlists in the playlist dataset 𝑃,
𝑥=@A is the 64-dimension embedding for the playlist and 𝑥>?"@A
is the 64-dimension embedding for the selected song.

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 17

IV. RESULTS

In this section, we discuss the experiments performed
regarding the LightGCN-based recommendation system
initialized with various song node embedding initializations.
For the experiments, LightGCN was run with three different
initializations, random normal (default), MTT-musicnn, and
MSD-musicnn.

LightGCN was trained on the two datasets with random
normal and the two musicnn embeddings initializations for
songs with fixed and trainable embedding for the extracted
featured song initializations and the results were compared.
The aggregation function for the GCN is addition and the
optimizer used is Adam. For negative sampling for loss
calculation, we used random sampling to save computation
costs, as there were over 27,000 songs. All experiments were
run with an embedding size of 64, and all training was done at
a learning rate of 0.001. The number of LightGCN layers (k)
was set to 3, as recommended. All these hyperparameters were
selected based on the implementation by [17].

TABLE I

RECALL@500 VALUE FOR K-CORE 10 DATASET FOR TWO
INITIALIZATIONS IN TRAINED AND FIXED SETTINGS
Song embedding

initialization
Trained Fixed

Random Normal 0.51 0.48
Musicnn-MTT 0.56 0.53
Musicnn-MSD 0.57 0.57

A. Experiments on K-core 10 Graph dataset
We trained the K-core 10 dataset for 100 epochs with 3

layers, a batch size of 1024, and an embedding
dimensionality of 64 in all the different embeddings and
trained/fixed settings. We calculated recall@k at K = 500,
which amounts to 2% of the total songs. K was selected as
such because the total number of songs was very high. We
split the dataset into 70% training, 15% validation, and 15%
test. Each split has all the nodes so only the edges were split.

We trained it first with embeddings of both songs and
playlists initialized to random normal values. We obtained a
recall@500 with random normal initialization of 0.51. With
the random normal song embeddings fixed, we obtained a
recall@500 value of 0.48.

Then we trained the model with song embeddings
initialized to the two different musicnn embeddings (MTT
and MSD) while initializing playlists with the default random
normal distribution. For both embeddings, we trained the
model in two settings. The first with song embeddings fixed,
and the second where song embeddings were allowed to train.
The fixed MTT-musicnn song initializations gave a
recall@500 of 0.53, while trainable MTT-musicnn improved
it to 0.56. However, using fixed and trainable MSD-musicnn
embeddings further improved both recall to 0.57. The results
are shown in TABLE I, which was the main finding of this
paper. This showed that introducing content embeddings
increased the model performance.

The trained embeddings reached a high value of validation
recall very early and then started to overfit early compared to
the fixed versions, as can be seen in Fig. 5. We see that both
of musicnn embedding song initializations always performed

better than the random normal initializations. The MSD
embeddings performed better than the MTT embeddings
which could be because MSD has better accuracy in the task
of audio-tagging. This could imply better audio-tagging
embedding models could result in better performance.

Fig. 5. Validation recall values at different song embedding initializations at
fixed and trainable song embeddings.

B. Subjective Experiments
We conducted two experiments to subjectively analyze the

model’s performance. One recommends songs based on a
given playlist (Playlist continuation), and the second
recommends playlists where a new unlinked song will most
likely belong to (Item cold-start). All these experiments were
conducted on the K-core 10 dataset and the best-performing
model, which was MSD.

Songs for playlists (Playlist continuation)

To analyze the playlist continuation, we evaluated the
model’s recommendations of songs for a given playlist. We
took a user’s personal playlist with 8 songs which were
present in MPD. The playlist was added to the graph, and the
model was trained with MSD trained embeddings. The 64-
dimensional playlist embeddings were obtained for the
playlist. The dot product of the playlist was calculated against
all the songs in the graph to obtain similarity scores. The
original playlist is shown in TABLE II.

TABLE II
ORIGINAL PLAYLIST “MATT” FOR PLAYLIST CONTINUATION

Songs in the original playlist Genre

The Man Who Sold the World,
David Bowie Rock
I Wanna Be Your Dog,
The Stooges Rock
Sweet Jane,
The Velvet Underground Rock
Paranoid,
Black Sabbath Rock
Killing in the Name,
Rage Against the Machine Rap Metal
Currency,
The Black Angels Alternative
Cold Cold Cold,
Cage the Elephant Alternative

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 18

TABLE III
PLAYLIST CONTINUATION RECOMMENDATIONS BASED ON MSD-MUSICNN AND RANDOM EMBEDDINGS FOR PLAYLIST “MATT”.

MSD Initialized Recommended Songs (Similarity Score 𝛔 = 0.68)

Song Genre Similarity Score

Lady Marmalade, Patti LaBelle Funk 12.73

Break On Through (To The Other Side), The Doors Rock 11.93

Burnin’ for You, Blue Öyster Cult Classic Rock 11.63

Highway to Hell, AC/DC Hard Rock 11.43

Long Cool Woman (In A Black Dress), The Hollies Swamp Rock 11.27

Faithfully, Journey Classic Rock 10.69

Suite: Judy Blue Eyes, Crosby, Stills and Nash Rock 10.65

Ramble On, Led Zeppelin Rock 10.65

Random Normal Initialized Recommended Songs (Similarity Score 𝛔 = 2.31)

Song Genre Similarity Score

Break On Through (To The Other Side), The Doors Rock 16.73

Lady Marmalade, Patti LaBelle Funk 14.42

Highway to Hell, AC/DC Hard Rock 13.83

Don’t Lean On Me, The Amity Affliction Metal 12.43

Ramble On, Led Zeppelin Rock 12.27

Take Me Home Tonight, Eddie Money Hard Rock 10.19

A Horse with No Name, America Folk Rock 10.05

We Didn’t Start the Fire, Billy Joel Pop Rock 9.65

The original playlist was mainly a rock playlist with all the

songs in the “Rock,” “Metal” or “Alternative” genres. In the
results from the MSD initialized recommender system,
shown in TABLE III, we got almost all songs from the rock
genre and its variations such as “Classic Rock,” “Folk Rock,”
“Hard Rock,” and “Swamp Rock”. The similarity scores were
less varying (standard deviation, 𝛔 = 0.68) but consequently
the recommended songs were less diverse.

The random normal initialized recommender also had
songs that are mostly “Rock” and “Metal" shown in Table III.
However, it also recommended one Funk song. The similarity
scores were more diverse (𝛔 = 2.31) and so were the
recommended songs. These were arguably better
recommendations in terms of variation.

Playlist for songs (Item cold-start)

This task was to find the best playlists that a new song
would belong to. This experiment was conducted using the
fixed MSD-musicnn embeddings. We chose fixed because

when we introduce a new song with no links its embeddings
cannot be trained. The problem of introducing a song with no
links is our item cold-start problem. To analyze the cold-start
performance of the model we introduced songs that were not
present in the dataset, songs released after 2018, shown in
TABLE IV. We then extracted the 200-dimension embeddings
of these new songs using the MSD-musicnn. These
embeddings were reduced to 64 dimensions using PCA by
fitting them with the respective 200-dimension embeddings
of the originally extracted embeddings of the songs in the K-
core 10 dataset.

Then we calculated the similarity scores of these song

embeddings against all the playlist embeddings which were
generated after being trained on MPD. We calculated the
similarity scores by taking the dot product between the
embeddings of the songs and the playlists. Then we selected
the top five playlists these songs would belong to, based on
the highest similarity scores.

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 19

TABLE IV
SONGS SELECTED FOR THE SONG COLD-START EXPERIMENT.

Song Artist Song Name musicnntags Genre (Google)

Singto Numchok
I just wanna pen-fan you
daibor guitar, male, male vocal Pop

Stone Temple Pilots Three Wishes guitar, male, pop Rock/Folk

Dua Lipa Levitating techno, pop, loud Pop/Electro

Adele Easy On Me guitar, piano, vocal Pop

Metallica Lux Æterna fast, techno, rock Speed Metal

Drake ft. Lil Durk Laugh Now Cry Later techno, electronic, male Hip-Hop/Rap

Taylor Swift Anti-Hero female, woman, female vocal Pop/Rock

TABLE V

 COLD-START PLAYLIST RECOMMENDATIONS BASED ON MSD EMBEDDINGS.

“Cold” Song Artist Song Name Playlist 1 Playlist 2 Playlist 3 Playlist 4

Singto I just wanna pen-fan you daibor miami
Harry
Potter pop lit

Stone T Three Wishes Acoustic Mix 2014 slow June

Dua L. Levitating boy bands classics Pop songs boy band

Adele Easy On Me fempower Classique calm sad

Metallica Lux Æterna Heavy Metal
Rock
Music Dante metal

Drake Laugh Now Cry Later Rapman Beyoncé Beyoncé Tunes

Taylor S. Anti-Hero Texas Country
new
country Country

Texas
forever

All the audio data for the new songs were taken from

YouTube in the form of MP3 files. The songs were chosen to
incorporate the most common genres such as rock, hard rock,
pop, and hip-hop. All the songs are among the most popular
songs in the genre and composed by popular artists, so they
could be subjectively judged by general users, who have a
high chance of having listened to it. All songs were released
after 2018, so they do not have any existing link to the
playlists in the training dataset. The embeddings were
extracted using MSD-musicnn from the full length of the
song and not just the 30-second audio previews as in the
training data.

The recommended playlists are shown in TABLE V. The
model correctly put Stone Temple pilots “Three wishes” in
acoustic Mix as it is an acoustic song. It distinctly recognized
the Metallica’s “Lux Æterna” as Hard Rock and Metal. Songs
such as Adele's “Easy on Me'” also seemed to be placed in
appropriate playlists called “calm'” and “sad.” Dua Lipa's
song also seemed correctly placed even though the name is
“boy bands” as this was a pop song. Despite this, the pop song
playlists were not as good, as the playlists recommended were
too diverse and seemed random. Further research will be

required for any conclusions.

C. Discussion
In this section, we discuss the results obtained in the above
experiments and analyze the performance of the model. We
analyzed the clustering capabilities of our model and its
objective evaluation using recall@k. Its subjective evaluation
has already been discussed.

Clustering

From Fig. 6, we can see that all three embedding
initializations did a fine job of creating suitable embeddings
for the playlists. The 64 dimensions of the playlist
embeddings were taken from the best-performing epoch after
the model was trained with the different initializations for
songs. These 64 dimensions were reduced to two dimensions
using t-SNE [20]. These clusters were labeled using the name
of the playlists. If a playlist contained the words “Rock,"
“Pop", “Country", “Rnb” or “Rap” it was assumed to have
songs from that genre. No genre or text information was
explicitly given to the model. Since there was no direct
connection between the two playlists as the graph is bipartite,
this clustering occurred completely based on the song
placement in the playlists.

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 20

While the musicnn initializations could provide the model
with genre information, as they are the audio feature
embeddings, it was surprising to see that the model learned
similar clustering even with random normal initializations.
Based on the well-clustered graph for genre, even with
random normal initializations, LightGCN embeddings
seemed to perform well in generating embeddings for
playlists.

Fig. 6. t-SNE plot for best epoch of each song embedding initializations for
the playlist data. Playlists grouped by genre.

Recall

Our main task was to predict links between the songs and
playlists as measured by recall@k. For this, we saw a
significantly higher performance for the musicnn song
embedding initializations compared to random normal
initializations. When keeping the song embeddings fixed,
while using both the extracted and random normal
embeddings, we saw the differences in the performance, as
shown in Table I. Based on the given performance differences
between the initializations with music embeddings, there
seemed to be a significantly better performance with content
information introduced in the dataset. The musicnn
embedding initializations always performed better than the
random normal ones.

The performance of extracted song embeddings was
analyzed with and without further training. Since the
performance difference was not very high with fixed and
trained song embeddings for the same embedding type, it
shows that the musicnn initialization values were more

representative of songs and gave good results even when they
were not updated.

V. CONCLUSION

In this paper, we introduced GNN methods and their
impressive performance in the task of recommendation.
GNNs have not been well-researched in terms of CB
recommendations. For this, we introduced audio content
features as embeddings initializations from musicnn into
LightGCN. A comparison of the performance with and
without the extracted embedding initializations showed that
the extracted embedding initialization methods performed
better for general recommendation and playlist continuation.
Item-cold-start for songs still require further research.

A. Conclusion
We saw that the extracted embeddings always perform

better than the random normal initialization values in the
music recommendation experiments. Thus, introducing
content in the form of extracted embeddings improves
recommendation performance, as measured by the recall@k
metric.

Upon subjectively analyzing the recommended songs that
could belong in a playlist for a specific case, we saw that both
embedding initializations (random and MSD-musicnn) gave
reasonably good recommendations. This was based on the
genre of the songs in the original playlists and the genre of
the songs that were recommended. Song recommendation is
a tricky matter, and solely relying on the genre or the
similarity score would not be a good metric, as sometimes
variation is a good thing for the listener.

However, in the task of item-cold start, the model did not
produce convincing results for pop songs but did give
reasonable results for rock and metal songs.

B. Limitations and Future Work
Some of the limitations of this paper are as follows.
i. The current experiments were performed only with

30-second audio clips of songs. A much more
complete analysis might take into account the entire
song audio.

ii. Varying amounts of embeddings could be tried out.
Changing the embedding size to 32, 64, or 128 and
evaluating the changes in performance could
provide valuable insights into the effects of its
embedding size.

iii. A more robust metric to measure the performance of
a recommender system could be developed. The
metric should be something more transparent than
recall@k but easier to justify than the type of
subjective analysis done here based mainly on song
genre.

iv. Also, an end-to-end network combining musicnn
and LightGCN in which we input audio files and
generate embeddings within the network could also
yield better results.

Journal of Information and Communication Technology (JICT) Volume 02. Spcl. Issue (Jan 2025)

Copyright ©2025 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 21

REFERENCES
[1] A. den Oord, S. Dieleman, and B. Schrauwen, ‘Deep content-based

music recommendation’, Adv Neural Inf Process Syst, vol. 26, 2013.
[2] L. Bernardi, J. Kamps, J. Kiseleva, and M. J. I. Müller, ‘The continuous

cold start problem in e-commerce recommender systems’, arXiv
preprint arXiv:1508.01177, 2015.

[3] R. Kiran, P. Kumar, and B. Bhasker, ‘DNNRec: A novel deep learning
based hybrid recommender system’, Expert Syst Appl, vol. 144, p.
113054, 2020.

[4] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, ‘Lightgcn:
Simplifying and powering graph convolution network for
recommendation’, in Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information
Retrieval, 2020, pp. 639–648.

[5] J. Pons and X. Serra, ‘musicnn: Pre-trained convolutional neural
networks for music audio tagging’, arXiv preprint arXiv:1909.06654,
2019.

[6] Y. Koren, R. Bell, and C. Volinsky, ‘Matrix factorization techniques
for recommender systems’, Computer (Long Beach Calif), vol. 42, no.
8, pp. 30–37, 2009.

[7] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘Neural
collaborative filtering’, in Proceedings of the 26th international
conference on world wide web, 2017, pp. 173–182.

[8] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, ‘Neural graph
collaborative filtering’, in Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information
Retrieval, 2019, pp. 165–174.

[9] S. Zhang, L. Yao, A. Sun, and Y. Tay, ‘Deep learning based
recommender system: A survey and new perspectives’, ACM
Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[10] Z. Batmaz, A. Yurekli, A. Bilge, and C. Kaleli, ‘A review on deep
learning for recommender systems: challenges and remedies’, Artif
Intell Rev, vol. 52, no. 1, pp. 1–37, 2019.

[11] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, ‘Graph neural networks
in recommender systems: a survey’, ACM Computing Surveys (CSUR),
2020.

[12] T. N. Kipf and M. Welling, ‘Semi-supervised classification with graph
convolutional networks’, arXiv preprint arXiv:1609.02907, 2016.

[13] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
‘BPR: Bayesian personalized ranking from implicit feedback’, arXiv
preprint arXiv:1205.2618, 2012.

[14] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, ‘The
million song dataset’, 2011.

[15] E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie, ‘Evaluation
of algorithms using games: The case of music tagging.’, in ISMIR,
2009, pp. 387–392.

[16] C.-W. Chen, P. Lamere, M. Schedl, and H. Zamani, ‘Recsys challenge
2018: Automatic music playlist continuation’, in Proceedings of the
12th ACM Conference on Recommender Systems, 2018, pp. 527–528.

[17] B. Alexander, J.-P. Chou, and A. Bansal, ‘Implement Your Own Music
Recommender with Graph Neural Networks (LightGCN)’, Dec. 2021.
[Online]. Available: https://medium.com/@benalex/implement-your-
own-music-recommender-with-graph-neural-networks-lightgcn-
f59e3bf5f8f5

[18] J. Leskovec and R. Sosič, ‘SNAP: A General-Purpose Network
Analysis and Graph-Mining Library’, ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[19] P. Lamere et al., ‘vssousa/spotipy: v1.0’, Sep. 2017, Zenodo. doi:
10.5281/zenodo.886524.

[20] L. der Maaten and G. Hinton, ‘Visualizing data using t-SNE.’, Journal
of machine learning research, vol. 9, no. 11, 2008.

