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Abstract— The music industry's rapid growth and the audience’s increased access to music have made music recommender 
systems increasingly relevant. Various approaches, including content-based and collaborative filtering, have been explored for 
this. Graph Convolution networks (GCNs) perform well in recommendation using bipartite graphs, but struggle with cold-start 
problems. This paper explores the use of audio features from songs as content in GCNs, resulting in a hybrid method which 
improved recall at K values for music recommendation. The LightGCN, a state-of-the-art model with one layer of trainable 
embeddings, was used as the primary recommender. The musicnn library was used to extract audio features from songs which 
were used as the initialization values for the LightGCN embeddings for songs. The Spotify Million Playlist Dataset was used 
to train the model for link prediction. The model predicted which playlist a given song should belong to. This method showed 
a 5% increase in recall at K for both trained and fixed embedding settings for songs, indicating that audio embedding 
initializations improve the performance of the LightGCN. The recall at K for random initialization with trained embeddings 
was 0.51 and with fixed embeddings was 0.48. Both values increased to 0.57 upon using initializations extracted from audio. 
The hybrid method showed reasonable results for playlist continuation, the random initialization gave diverse results and 
extracted initialization gave consistent results based on similarity scores. However, it gave inconclusive results for item cold-
start problems because no clear metric was identified for its evaluation. 
 
Index Terms – musicnn, item cold-start, audio embeddings, Spotify Million Playlist 
 
 

I. INTRODUCTION 

ECOMMENDER systems are crucial for consumers to 
filter vast amounts of music content on the internet. With 

the rise of independent artists and the ease of access to all 
artists worldwide, a fast and effective way to recommend 
songs is needed. Recommender systems typically use 
collaborative filtering (CF) based on usage patterns and 
ratings.                                                                                                                                                           

Music recommendation has always been an extensive 
problem, and up until 2013, with the approach by den Oord, 
Dieleman and Schrauwen (2013) [1], Content-based (CB) 
recommenders were considered inferior to CF. Deep 
learning-based Graph Neural Networks (GNNs) like NeuMF, 
Neural Graph Collaborative Filtering (NGCF), and 
LightGCN perform well, but they struggle with the cold-start 
problem, which is of  two types - item cold start and user cold 
start, depending on which information is missing [2]. There 
have been many hybrid models such as that of  [3] which have 
combined CF with content data about items. However, until 
now, GNNs have mainly only used the CF approach.  
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In this paper, we took the LightGCN model [4] and used 
musicnn [5] to incorporate audio content features into node 
embeddings of songs, enabling a better hybrid 
recommendation model. The proposed architecture is shown 
in Fig. 1. Using the features extracted from musicnn we 
improved the model’s performance and tackled the item-
cold-start problem by giving the model data about the song 
content. 

In order to achieve this, we followed the following steps: 
i. Created a version of LightGCN incorporating audio 

features as embedding initializations. 
ii. Used the data from the Spotify Million Playlist Dataset 

(MPD) along with the audio from Spotify’s preview 
URL to download 30-second audio files for the 
experiments. 

iii. Extracted the audio embeddings from the preview 
audio files using musicnn to initialize GNN 
embeddings of the songs and train the model. 

iv. Evaluated the performance of the model in playlist 
continuation and item cold-start scenarios based on 
subjective analysis of the results. 

v. Evaluated the experiment using recall@k metric with 
the LightGCN and compared the difference that 
embedding initializations make on the performance. 

 
II. LITERATURE REVIEW 

In this section, the two elements of the method, the 
recommender system and the audio feature embeddings 
which is used to initialize the node embeddings in our graph, 
are discussed. Among deep learning methods, GNNs have 
been shown to perform well for the task of recommendations. 
Audio embeddings generated by various methods also have 
been shown to capture the features to aptly represent the 
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content of the sound. Hence, combining these two elements 
was the prime motive of this paper. 
 

 
Fig. 1. Proposed method to introduce Audio Embeddings into LightGCN. 

A. Recommender Systems 
Recommender systems deduce users’ preferences from 

user-item interactions or fixed attributes, and then suggest 
other products that users might be interested in. Formally, the 
main task of the recommender is to estimate or predict the 
user’s preference for any item 𝑖  ∈  𝐼 represented by 

 
𝑦(",$)  =  𝑓%ℎ∗" ,  ℎ∗$(, (1) 

  
where ℎ∗"  is item 𝑖’s learned representation, ℎ∗#	is user 𝑢’s 

learned representation, score function   𝑓(·) can implement 
any of a variety of operations including dot product, cosine 
and multi-layer perceptrons and 𝑦(#,")  is the preference or 
similarity score for user 𝑢 on item 𝑖, which ideally represents 
the probability the two entities will interact. In this case, the 
item is the song, and the user is the playlist. 

Recommender systems gained widespread use after the 
introduction of the matrix factorization (MF) collaborative 
filtering (CF) algorithm during the Netflix Prize competition. 
The inclusion of various kinds of supplementary information 
made this technique preferable to traditional nearest-neighbor 
algorithms for product recommendations [6]. Later, [1] used 
CF combined with latent audio features extracted from a 
CNN. [7] used neural networks to model the latent features in 
MF. [8] came up with NGCF, which make use of the user-
item graph structure by generating embeddings on it.[4] 
removed unnecessary features from NGCF and improved its 
performance while making it less complex and created the 
LightGCN. This is the model we use for the experiments. 

There are three types of recommender systems, depending 
on the type of information they use to make the 
recommendation. The categories are content-based (CB), 
collaborative filtering (CF), and hybrid.  
CB recommendations are primarily based on comparisons 
between objects and auxiliary data provided by users [9]. CB 
filtering recommends items that have high similarity to past 
items the user has interacted with. This system is very 
efficient in cold start scenarios [10] but they are unable to 
provide personalized recommendations and are also limited 
in variety because there is insufficient data available about 
the user’s profile. 

CF is the most used approach in recommender systems. 
This method works on the principle that people with similar 
tastes will be interested in similar content. These systems 
base their recommendations on the preferences of like-
minded users instead of the features of each item.  

In hybrid recommender systems, multiple approaches are 
combined, and the benefits of each approach are used to 
offset the drawbacks of the others [10].  The method 
described in this paper can be considered a hybrid method as 
we incorporate content into the GCN in the form of audio 
embeddings. 

B. Graph Neural Network-based Recommender Systems 
One of the approaches that have led to rapid progress in 

recommender systems is the GNNs, which use a graph 
representation of the recommender data. User-item 
interactions can be aptly represented in the form of a bipartite 
graph between user and item nodes as shown in Fig. 2.  

LightGCN is a Graph Convolutional Network built upon 
the NGCF, the previous state-of-the-art GCN-based 
recommender model [8]. Feature transformation and non-
linear activation were removed from the NGCF model, 
resulting in LightGCN, which obtained better results. The 
basic GCN learns representations for nodes by smoothing 
features over the graph through iterative graph convolution. 
GCN aggregates features of neighbors to obtain a new 
representation of each target node: 

 
𝒆#
('()) = AGG1𝒆#

('), {𝒆"
('): i ∈ 𝒩𝓊}8, (2) 

 
where, 𝒆#

(') and 𝒆"
(')are the refined embeddings of user u 

and item i, respectively, after k layers of propagation. 𝒩𝓊 
denotes the set of items that user u has interacted with. AGG 
is an aggregation function that considers the k-th layer’s 
representation of the target node [4].  

 

 
Fig. 2. GNN framework for user-item collaborative filtering. Reprinted from 
[11] 

LightGCN uses a simpler weighted sum aggregator as 
shown in Fig. 3, and it abandons feature transformation and 
non-linear activations which have been shown to be 
burdensome for CF. In LightGCN, the graph convolution 
operation is defined as, 

𝑒#
('()) = ; <

1
1>(|𝑁"|)>(|𝑁#|)8

A
"∈,!

∗ 𝑒"
('),

𝑒"
('()) = ; <

1
1>(|𝑁"|)>(|𝑁#|)8

A
#∈𝒩"

∗ 𝑒#
('), (3)

 

where 𝑁#  denotes the set of items user 𝑢  has interacted 
with and 𝑁" is the set of users that have interacted with item 
𝑖 [4]. The term )

./(|,"|)/(|,!|)1
 is the symmetric normalization 
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term that follows the standard GCN design of [12], which 
helps prevent the scale of embeddings from increasing with 
graph convolution operations.  

 
All the layers are then combined as shown in Equation (4). 

𝛼'  is set to 1 1 + 𝐾G 	 as it gives good performance of the 
model [4].  

𝒆#  =  ;𝛼'𝒆#
(')

2

'34

; 	 𝒆"   =  ;𝛼'𝒆"
(')

2

'34

(4) 

The final model prediction is the inner product of user and 
item final representations. It is used to rank items or users for 
recommendation generation. The equation is, 

 
 𝑦J#" = 𝒆#5𝒆" (5) 

 
LGCN uses the Bayesian personalized ranking loss [13] 

𝐿678 = −; ; ; ln𝜎
9∉𝒩𝓊

1𝑦J#" − 𝑦J#98
"∈𝒩𝓊

;

#3)

+ λ||𝐸(4)||<							 

																			(6)  

 
where λ controls the L2 regularization strength. 

 

 
Fig. 3. LightGCN architecture. Reprinted from [4]. 
 

C. Audio Embeddings 
For this paper, the audio embeddings were extracted from 

the songs using the Python library musicnn [5] which 
contains models pre-trained on the Million Song Dataset 
(MSD) [14] and the MagnaTagATune (MTT) [15] dataset. 
The model can be used for out-of-the-box music audio 
tagging. This was used to extract embeddings from audio 
which was our goal. 

The basic building blocks of the musicnn model can be 
seen in Fig. 4. The model uses a log-mel spectrogram, which 
is fed into a music-motivated CNN front-end to capture the 
timbral and temporal features of the audio. These features are 
fed to the dense layer middle portion of the model, which 
extracts higher-level representations from the previous 
layers. The final temporal pooling back-end predicts tags 
from the extracted features. The penultimate layer is derived 
from this back-end. These are the features used in this 
experiment to initialize the LightGCN embeddings. 

 
 

Fig. 4. Overall building blocks of musicnn model. Reprinted from [5] 

III. METHODOLOGY AND EXPERIMENTAL 
DESIGN  

For our experiment, content information was injected in 
the form of audio feature embeddings extracted from musicnn 
into our LightGCN model initialization for songs as shown in 
Fig. 1. In this section, the entire process, from data 
acquisition, pre-processing, audio embedding extraction, 
recommendation prediction, and evaluation are discussed. 

A. Dataset 
The dataset used is the Spotify MPD [16], which contains 

1,000,000 playlists. A playlist includes playlist title and the 
titles of the songs. The dataset has over two million unique 
songs and over 66 million edges. The edges are links between 
songs and playlists. The playlists were created by users on the 
Spotify platform between January 2010 and October 2017. 
We used this information later to simulate the cold-start 
problem taking songs released after 2018 that are not present 
in the dataset. 

Since the original dataset is extensive, we used a smaller 
subset of different sizes as created by [17] for our 
experiments. The data subset was created by calculating its 
K-core which is "The largest connected sub-graph of a graph 
with every node having a degree of at least K" [17]. Here we 
used K-core 10 and removed songs with no audio previews 
to get the required dataset. Our Spotify MPD K-core 10 
dataset has 71,233 playlists and 27,687 songs after removing 
songs with no audio previews. It has 1,812,878 undirected 
edges between songs and playlists.  

B. Preprocessing 
In this section, we discuss the process for converting of the 

raw JSON files, which is the default format of the MPD, 
specifying playlists and songs as nodes into to a PyTorch 
Geometric Graph, along with the audio embedding extraction 
process. 
 
Graph creation 

The graph representation of the dataset was created by 
converting the JSON file of the Spotify MPD into a PyTorch 
Geometric file with the help of Stanford-SNAP library [18]. 
The graph is bipartite, so there are no connections between 
similar nodes i.e., no connection between songs or between 
playlists themselves. 
 
Audio embeddings 

The audio embeddings were extracted from the songs with 
Spotify’s available 30-second previews using the Spotipy 
library for Python [19]. The songs that did not have audio 
previews were discarded. 

The embeddings of the audio were extracted using 
musicnn. It had two pre-trained weights MTT-musicnn and 
MSD-musicnn, which were obtained by training the MTT 
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and MSD, respectively. Musicnn generates song-level tags 
from audio. The tags include the instrument, style, vocal 
types, and many more based on the content of the audio file. 
For this case, we extracted the 200-unit embeddings from the 
penultimate layer of musicnn. These 200 elements are 
reduced to 64 using Principal Component Analysis (PCA), as 
our LightGCN model is designed for 64-element embedding 
initialization. 

 
Combining Audio Embeddings and LightGCN 

Our main objective is to feed content information into 
LightGCN. We do this by initializing song node embeddings 
in the GCN using the audio embeddings of the songs 
extracted by musicnn. The task we performed was link 
prediction. We predicted links between two nodes (a song and 
a playlist) based on their similarity scores. We used the dot 
products between embeddings of the two nodes (song and 
playlist) from the final layer of the model to represent how 
likely the song is to end up in that playlist. Our equation for 
the similarity is the dot product between song and playlist 
embeddings as shown below, 

 
𝑠𝑖𝑚(𝑝, 𝑠) = 𝑥=2 ⋅ 𝑥>2 (7) 

 
where 𝑝 is a playlist, 𝑠 is a song, 𝑥=2 is the embedding for 

the playlist, and 𝑥>2 is the embedding for the song, both of 𝐾 
dimensions. 

GCNs create node embeddings for each playlist and each 
song. We initialized song embeddings as the audio 
embeddings generated from musicnn. We initialized playlist 
embeddings using a random normal distribution. Then, we 
used two methods to train the model. First, fixed embeddings, 
where we froze the song embeddings by giving them a 
gradient of 0 during training. Then we trained the model, and 
it learned only the playlist embeddings. The song embeddings 
remained unchanged throughout the training. Second is 
trained embeddings, where we trained both song and playlist 
embeddings. Here, the model learned new embeddings for 
both songs and playlists while it trained. Loss function used 
in both cases was the BPR loss. 

C. Evaluation method 
The model was evaluated using two methods. First was 

calculating the recall@k. The second was the subjective 
analysis of the results for two tasks, playlist continuation and 
song cold-start problem. 

 
Recall 

To assess the model performance, we used recall@k. 
Recall@k is the ratio of the number of songs in the top K 
recommendations that are relevant to the total number of 
songs that are relevant according to the ground truth.  

 

Recall@k =
𝑆𝑜𝑛𝑔𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑜𝑛𝑔𝑠 , (8) 

  
For a specific playlist 𝑝 it can be expressed as 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 for playlist p =
n𝑃= ∩ 𝑅=n
n𝑃=n

, (9) 

 
where, 𝑃= is the set of positive items (songs) the playlist 

includes and 𝑅=	 is the set of songs recommended by the 
model. For the top K recommendations |𝑅=| = 𝐾. Songs that 
are already in the playlist (training set) were excluded. The 
final recall@k value was calculated by averaging recall 
across all playlists. 

 
Subjective Evaluation 

Since we are dealing with music, it is difficult to rely only 
on the recall values, as there are subjective nuances to music 
and its recommendation. To address this, we performed two 
types of subjective evaluation. The first recommended songs 
for a particular playlist (playlist continuation) and the second 
predicted the playlists for a particular song (item cold-start). 

For playlist continuation, we evaluated the 
recommendation of songs given for a custom playlist-of-
interest. We obtained the embeddings of this playlist. Then 
we obtained the top K songs, not present in the playlist, that 
have the highest similarity score with the playlist by 
calculating the dot product of the embedding of the playlist 
with all the song embeddings in the dataset, as shown in 
Equation 10. Recommended songs were then subjectively 
analyzed based on genre given the songs that it was trained 
on. Specifically, 

 
𝑠𝑖𝑚(𝑝𝑜𝑖, 𝑠) = 𝑥=?"@A ⋅ 𝑥>@A ;  𝑝𝑜𝑖 ∈ 𝑃 ,  𝑠 ∈ 𝑆, (10) 

 
where 𝑝𝑜𝑖  is the playlist of interest also present in the 

playlist dataset	𝑃 , 𝑠 is a song in the dataset 𝑆, 𝑥=?"@A   is the 64-
dimension embedding for the playlist and 𝑥>@A  is the 64-
dimension embedding for the song. 

 For the item cold-start, we evaluated the playlists 
recommended for a “cold” song. Given a song with no 
previous links, the model predicts the best playlist it should 
belong to. We evaluated the cold-start performance through 
this. Since the train-test validation split used is random, and 
each of the splits includes all the nodes. The method was 
introducing new songs from after 2018, which were not 
present in our dataset and subjectively analyze those songs’ 
playlist prediction. Embeddings of the songs were generated 
using the musicnn library. The similarity scores were checked 
against each playlist’s embeddings as shown below. The 
model predicted the top playlists the song could belong to, 
based on the top similarity scores, and the results were 
subjectively analyzed. Specifically, 

 
𝑠𝑖𝑚(𝑝, 𝑠𝑜𝑖) = 𝑥=@A ⋅ 𝑥>?"@A  ;  𝑝 ∈ 𝑃 ,  𝑠𝑜𝑖 ∉ 𝑆, (11) 

 
where 𝑠𝑜𝑖 is the cold song of interest, which is not in the 

song dataset 𝑆, 𝑝 are the playlists in the playlist dataset 𝑃,  
𝑥=@A is the 64-dimension embedding for the playlist and 𝑥>?"@A  
is the 64-dimension embedding for the selected song. 
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IV. RESULTS  

In this section, we discuss the experiments performed 
regarding the LightGCN-based recommendation system 
initialized with various song node embedding initializations. 
For the experiments, LightGCN was run with three different 
initializations, random normal (default), MTT-musicnn, and 
MSD-musicnn. 

LightGCN was trained on the two datasets with random 
normal and the two musicnn embeddings initializations for 
songs with fixed and trainable embedding for the extracted 
featured song initializations and the results were compared. 
The aggregation function for the GCN is addition and the 
optimizer used is Adam. For negative sampling for loss 
calculation, we used random sampling to save computation 
costs, as there were over 27,000 songs. All experiments were 
run with an embedding size of 64, and all training was done at 
a learning rate of 0.001. The number of LightGCN layers (k) 
was set to 3, as recommended. All these hyperparameters were 
selected based on the implementation by [17]. 

 
TABLE I 

RECALL@500 VALUE FOR K-CORE 10 DATASET FOR TWO 
INITIALIZATIONS IN TRAINED AND FIXED SETTINGS 
Song embedding 

initialization 
Trained Fixed 

Random Normal 0.51 0.48 
Musicnn-MTT  0.56 0.53 
Musicnn-MSD  0.57 0.57 

A. Experiments on K-core 10 Graph dataset 
We trained the K-core 10 dataset for 100 epochs with 3 

layers, a batch size of 1024, and an embedding 
dimensionality of 64 in all the different embeddings and 
trained/fixed settings. We calculated recall@k at K = 500, 
which amounts to 2% of the total songs. K was selected as 
such because the total number of songs was very high. We 
split the dataset into 70% training, 15% validation, and 15% 
test. Each split has all the nodes so only the edges were split.  

We trained it first with embeddings of both songs and 
playlists initialized to random normal values. We obtained a 
recall@500 with random normal initialization of 0.51. With 
the random normal song embeddings fixed, we obtained a 
recall@500 value of 0.48.  

Then we trained the model with song embeddings 
initialized to the two different musicnn embeddings (MTT 
and MSD) while initializing playlists with the default random 
normal distribution. For both embeddings, we trained the 
model in two settings. The first with song embeddings fixed, 
and the second where song embeddings were allowed to train. 
The fixed MTT-musicnn song initializations gave a 
recall@500 of 0.53, while trainable MTT-musicnn improved 
it to 0.56. However, using fixed and trainable MSD-musicnn 
embeddings further improved both recall to 0.57. The results 
are shown in TABLE I, which was the main finding of this 
paper. This showed that introducing content embeddings 
increased the model performance. 

The trained embeddings reached a high value of validation 
recall very early and then started to overfit early compared to 
the fixed versions, as can be seen in Fig. 5. We see that both 
of musicnn embedding song initializations always performed 

better than the random normal initializations. The MSD 
embeddings performed better than the MTT embeddings 
which could be because MSD has better accuracy in the task 
of audio-tagging. This could imply better audio-tagging 
embedding models could result in better performance. 

 
Fig. 5. Validation recall values at different song embedding initializations at 
fixed and trainable song embeddings. 
 

B. Subjective Experiments 
We conducted two experiments to subjectively analyze the 

model’s performance. One recommends songs based on a 
given playlist (Playlist continuation), and the second 
recommends playlists where a new unlinked song will most 
likely belong to (Item cold-start). All these experiments were 
conducted on the K-core 10 dataset and the best-performing 
model, which was MSD.  

 
Songs for playlists (Playlist continuation) 

To analyze the playlist continuation, we evaluated the 
model’s recommendations of songs for a given playlist. We 
took a user’s personal playlist with 8 songs which were 
present in MPD. The playlist was added to the graph, and the 
model was trained with MSD trained embeddings. The 64-
dimensional playlist embeddings were obtained for the 
playlist. The dot product of the playlist was calculated against 
all the songs in the graph to obtain similarity scores. The 
original playlist is shown in TABLE II. 

 

TABLE II 
ORIGINAL PLAYLIST “MATT” FOR PLAYLIST CONTINUATION 

 
Songs in the original playlist Genre 

The Man Who Sold the World, 
David Bowie Rock 
I Wanna Be Your Dog, 
The Stooges Rock 
Sweet Jane, 
The Velvet Underground Rock 
Paranoid, 
Black Sabbath Rock 
Killing in the Name, 
Rage Against the Machine Rap Metal 
Currency, 
The Black Angels Alternative 
Cold Cold Cold, 
Cage the Elephant Alternative 
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TABLE III 
PLAYLIST CONTINUATION RECOMMENDATIONS BASED ON MSD-MUSICNN AND RANDOM EMBEDDINGS FOR PLAYLIST “MATT”. 

MSD Initialized Recommended Songs (Similarity Score 𝛔 = 0.68) 

Song Genre Similarity Score 

Lady Marmalade, Patti LaBelle Funk 12.73 

Break On Through (To The Other Side), The Doors Rock 11.93 

Burnin’ for You, Blue Öyster Cult Classic Rock 11.63 

Highway to Hell, AC/DC Hard Rock 11.43 

Long Cool Woman (In A Black Dress), The Hollies Swamp Rock 11.27 

Faithfully, Journey Classic Rock 10.69 

Suite: Judy Blue Eyes, Crosby, Stills and Nash Rock 10.65 

Ramble On, Led Zeppelin Rock 10.65 

Random Normal Initialized Recommended Songs (Similarity Score 𝛔 = 2.31) 

Song Genre Similarity Score 

Break On Through (To The Other Side), The Doors Rock 16.73 

Lady Marmalade, Patti LaBelle Funk 14.42 

Highway to Hell, AC/DC Hard Rock 13.83 

Don’t Lean On Me, The Amity Affliction Metal 12.43 

Ramble On, Led Zeppelin Rock 12.27 

Take Me Home Tonight, Eddie Money Hard Rock 10.19 

A Horse with No Name, America Folk Rock 10.05 

We Didn’t Start the Fire, Billy Joel Pop Rock 9.65 
 

 
 
The original playlist was mainly a rock playlist with all the 

songs in the “Rock,” “Metal” or “Alternative” genres. In the 
results from the MSD initialized recommender system, 
shown in TABLE III, we got almost all songs from the rock 
genre and its variations such as “Classic Rock,” “Folk Rock,” 
“Hard Rock,” and “Swamp Rock”. The similarity scores were 
less varying (standard deviation, 𝛔 = 0.68) but consequently 
the recommended songs were less diverse. 

The random normal initialized recommender also had 
songs that are mostly “Rock” and “Metal" shown in Table III. 
However, it also recommended one Funk song. The similarity 
scores were more diverse (𝛔 = 2.31) and so were the 
recommended songs. These were arguably better 
recommendations in terms of variation. 
 
Playlist for songs (Item cold-start) 

This task was to find the best playlists that a new song 
would belong to. This experiment was conducted using the 
fixed MSD-musicnn embeddings. We chose fixed because 

when we introduce a new song with no links its embeddings 
cannot be trained. The problem of introducing a song with no 
links is our item cold-start problem. To analyze the cold-start 
performance of the model we introduced songs that were not 
present in the dataset, songs released after 2018, shown in 
TABLE IV. We then extracted the 200-dimension embeddings 
of these new songs using the MSD-musicnn. These 
embeddings were reduced to 64 dimensions using PCA by 
fitting them with the respective 200-dimension embeddings 
of the originally extracted embeddings of the songs in the K-
core 10 dataset.  

 
Then we calculated the similarity scores of these song 

embeddings against all the playlist embeddings which were 
generated after being trained on MPD. We calculated the 
similarity scores by taking the dot product between the 
embeddings of the songs and the playlists. Then we selected 
the top five playlists these songs would belong to, based on 
the highest similarity scores. 
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TABLE IV 
SONGS SELECTED FOR THE SONG COLD-START EXPERIMENT. 

Song Artist Song Name musicnntags Genre (Google) 

Singto Numchok 
I just wanna pen-fan you 
daibor guitar, male, male vocal Pop 

Stone Temple Pilots Three Wishes guitar, male, pop Rock/Folk 

Dua Lipa Levitating techno, pop, loud Pop/Electro 

Adele Easy On Me guitar, piano, vocal Pop 

Metallica Lux Æterna fast, techno, rock Speed Metal 

Drake ft. Lil Durk Laugh Now Cry Later techno, electronic, male Hip-Hop/Rap 

Taylor Swift Anti-Hero female, woman, female vocal Pop/Rock 
 

 
TABLE V 

 COLD-START PLAYLIST RECOMMENDATIONS BASED ON MSD EMBEDDINGS. 

“Cold” Song Artist Song Name Playlist 1 Playlist 2 Playlist 3 Playlist 4 

Singto I just wanna pen-fan you daibor miami 
Harry 
Potter pop lit 

Stone T Three Wishes Acoustic Mix 2014 slow June 

Dua L. Levitating boy bands classics Pop songs boy band 

Adele Easy On Me fempower Classique calm sad 

Metallica Lux Æterna Heavy Metal 
Rock 
Music Dante metal 

Drake Laugh Now Cry Later Rapman Beyoncé Beyoncé Tunes 

Taylor S. Anti-Hero Texas Country 
new 
country Country 

Texas 
forever 

 
 
 

 
All the audio data for the new songs were taken from 

YouTube in the form of MP3 files. The songs were chosen to 
incorporate the most common genres such as rock, hard rock, 
pop, and hip-hop. All the songs are among the most popular 
songs in the genre and composed by popular artists, so they 
could be subjectively judged by general users, who have a 
high chance of having listened to it. All songs were released 
after 2018, so they do not have any existing link to the 
playlists in the training dataset. The embeddings were 
extracted using MSD-musicnn from the full length of the 
song and not just the 30-second audio previews as in the 
training data. 

The recommended playlists are shown in TABLE V. The 
model correctly put Stone Temple pilots “Three wishes” in 
acoustic Mix as it is an acoustic song. It distinctly recognized 
the Metallica’s “Lux Æterna” as Hard Rock and Metal. Songs 
such as Adele's “Easy on Me'” also seemed to be placed in 
appropriate playlists called “calm'” and “sad.” Dua Lipa's 
song also seemed correctly placed even though the name is 
“boy bands” as this was a pop song. Despite this, the pop song 
playlists were not as good, as the playlists recommended were 
too diverse and seemed random. Further research will be 

required for any conclusions. 
 

C. Discussion 
In this section, we discuss the results obtained in the above 
experiments and analyze the performance of the model. We 
analyzed the clustering capabilities of our model and its 
objective evaluation using recall@k. Its subjective evaluation 
has already been discussed. 
 
Clustering 

From Fig. 6, we can see that all three embedding 
initializations did a fine job of creating suitable embeddings 
for the playlists. The 64 dimensions of the playlist 
embeddings were taken from the best-performing epoch after 
the model was trained with the different initializations for 
songs. These 64 dimensions were reduced to two dimensions 
using t-SNE [20]. These clusters were labeled using the name 
of the playlists. If a playlist contained the words “Rock," 
“Pop", “Country", “Rnb” or “Rap” it was assumed to have 
songs from that genre. No genre or text information was 
explicitly given to the model. Since there was no direct 
connection between the two playlists as the graph is bipartite, 
this clustering occurred completely based on the song 
placement in the playlists.  
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While the musicnn initializations could provide the model 
with genre information, as they are the audio feature 
embeddings, it was surprising to see that the model learned 
similar clustering even with random normal initializations. 
Based on the well-clustered graph for genre, even with 
random normal initializations, LightGCN embeddings 
seemed to perform well in generating embeddings for 
playlists. 

 

 
Fig. 6. t-SNE plot for best epoch of each song embedding initializations for 
the playlist data. Playlists grouped by genre. 
 
Recall 

Our main task was to predict links between the songs and 
playlists as measured by recall@k. For this, we saw a 
significantly higher performance for the musicnn song 
embedding initializations compared to random normal 
initializations. When keeping the song embeddings fixed, 
while using both the extracted and random normal 
embeddings, we saw the differences in the performance, as 
shown in Table I. Based on the given performance differences 
between the initializations with music embeddings, there 
seemed to be a significantly better performance with content 
information introduced in the dataset. The musicnn 
embedding initializations always performed better than the 
random normal ones. 

The performance of extracted song embeddings was 
analyzed with and without further training. Since the 
performance difference was not very high with fixed and 
trained song embeddings for the same embedding type, it 
shows that the musicnn initialization values were more 

representative of songs and gave good results even when they 
were not updated. 

V. CONCLUSION  

In this paper, we introduced GNN methods and their 
impressive performance in the task of recommendation. 
GNNs have not been well-researched in terms of CB 
recommendations. For this, we introduced audio content 
features as embeddings initializations from musicnn into 
LightGCN. A comparison of the performance with and 
without the extracted embedding initializations showed that 
the extracted embedding initialization methods performed 
better for general recommendation and playlist continuation. 
Item-cold-start for songs still require further research. 

A. Conclusion 
We saw that the extracted embeddings always perform 

better than the random normal initialization values in the 
music recommendation experiments. Thus, introducing 
content in the form of extracted embeddings improves 
recommendation performance, as measured by the recall@k 
metric. 

Upon subjectively analyzing the recommended songs that 
could belong in a playlist for a specific case, we saw that both 
embedding initializations (random and MSD-musicnn) gave 
reasonably good recommendations. This was based on the 
genre of the songs in the original playlists and the genre of 
the songs that were recommended. Song recommendation is 
a tricky matter, and solely relying on the genre or the 
similarity score would not be a good metric, as sometimes 
variation is a good thing for the listener. 

However, in the task of item-cold start, the model did not 
produce convincing results for pop songs but did give 
reasonable results for rock and metal songs. 

B. Limitations and Future Work 
Some of the limitations of this paper are as follows. 
i. The current experiments were performed only with 

30-second audio clips of songs. A much more 
complete analysis might take into account the entire 
song audio. 

ii. Varying amounts of embeddings could be tried out. 
Changing the embedding size to 32, 64, or 128 and 
evaluating the changes in performance could 
provide valuable insights into the effects of its 
embedding size. 

iii. A more robust metric to measure the performance of 
a recommender system could be developed. The 
metric should be something more transparent than 
recall@k but easier to justify than the type of 
subjective analysis done here based mainly on song 
genre. 

iv. Also, an end-to-end network combining musicnn 
and LightGCN in which we input audio files and 
generate embeddings within the network could also 
yield better results. 
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